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We present the Shannon entropy as an indicator of the spatial resolutions of the morphologies of the 
resonance mode patterns in an optical resonator. We obtain each optimized number of mesh points, one 
of minimum size and the other of maximum one. The optimized mesh-point number of minimum size is 
determined by the identifiable quantum number through a chi-squared test, whereas the saturation of the 
difference between Shannon entropies corresponds to the other mesh-point number of maximum size. 
We also show that the optimized minimum mesh-point increases as the (real) wave number increases 
and approximates the proportionality constant between them.
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I. INTRODUCTION

Optical resonators have been considered good candi-
dates for optical sources [1, 2] and have been studied ex-
tensively in various theoretical and experimental contexts, 
such as unidirectional emission [3–5], high quality factors 
[6, 7], optical sensors [8, 9], and whispering gallery modes 
[10–12]. They are also regarded as good platforms for 
studying many fundamental physical phenomena, e.g. ray-
way correspondence [13, 14], tunneling [15, 16], scar [17, 18], 
avoided crossing [19, 20], exceptional points [21, 22], and 
chaos [23, 24]. Furthermore, in previous work [25] we first 
showed that the Shannon entropy can also be investigated 
in microcavities.

The Shannon entropy, first introduced by Shannon, is 
a functional that measures the average information con-
tent of a statistical ensembles of a random variable. It was 
originally developed and utilized in communication theory 
[26] and statistical mechanics [27], but recently it has been 
also exploited in various areas. The Shannon entropy has 

been used not only for molecular descriptors [28], protein 
sequences [29] in bio-systems and algorithmic complexity 
[30] in information theory, but also for avoided crossing 
in optics: the relation of which to the Shannon entropy has 
been investigated for microcavities [25], atomic physics 
[31, 32], and the quantum transition from order to chaos in 
quantum chaos [33]. 

In a previous study [25], we showed that the Shannon 
entropy changes depending on the parameter and is maxi-
mized at the center of the interaction, owing to a coherent 
superposition of wavefunctions (mixing of the wavefunc-
tions), which indicates that the variation of the Shannon en-
tropy is related to the variation of the morphologies of the 
wavefunctions. This fact suggests that the Shannon entropy 
can be used to study the morphology of the wavefunction. 
In this paper, we employ the Shannon entropy to determine 
the optimal number of mesh points for the morphology of 
the mode pattern in a two-dimensional elliptical optical 
resonator.

In the case of the one-dimensional resolution of the 
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boundary-element method, the optimized boundary line el-
ement ∆Sopt for the relevant wavelength  res is approximated 
by ∆Sopt ~16 res [34]. Thus, when ∆S ≤ ∆Sopt, the two-di-
mensional resolution (the morphology of the mode pattern) 
depends on the discretization of the area in the resonator. 
Specifying the spatial resolution of the morphology is inev-
itable in numerical calculations since we must discretize the 
object [34]; hence, estimating the optimized spatial resolu-
tion can reduce any unnecessary effort in numerical calcu-
lations. To the best of our knowledge, however, no method 
has been devised for estimating the optimized resolution of 
the mode pattern in an optical resonator with the boundary-
element method.

This paper is organized as follows. In Section II, the 
Shannon entropy of an elliptical microcavity is introduced. 
In Section III, we study the difference between Shannon 
entropies and its saturation. Comparison of two Shannon 
entropies for spatial resolution is discussed in Section IV. 
Finally, we summarize our work in Section V.

II. THE SHANNON ENTROPY OF AN 
ELLIPTICAL MICROCAVITY

The eigenvalue trajectories of an elliptical resonator with 
major axis a and minor axis b are shown in Fig. 1. The ei-
genvalues and eigenmodes are calculated using the bound-
ary-element method (BEM) [34] with a refractive index of 
the resonator n = 3.3 for the TE mode. The BEM is useful 
for obtaining the eigenvalues and eigenmodes in various ar-
eas such as bubble dynamics [35], scattering of broadband 
waves [36], and modeling of over-moded cavities [37]. The 

real and imaginary parts of the eigenvalues kR are plot-

ted as the eccentricity � � �� � ��
�
�
�

  from  = 0.0 to  = 

0.51 in Figs. 1(a) and 1(b), respectively. In this paper, we 
consider only the inner part of the resonator, which a non-
Hermitian Hamiltonian Heff describes well [38, 39]. That is

Heff ψk = zkψk, (1)

with its complex eigenvalues zk and their eigenfunctions ψk. 
Here, the complex eigenvalues are defined by �� � 
� �

	

�
��  

with the real part Ek and imaginary part Γk representing an 
energy and a decay width of k-the eigenmodes, respective-
ly, resulting in a quality factor � �



�

�
�

.
To introduce the discrete probability distribution, we 

discretize the area within the resonator into the N pieces 
that play the role of the N-mesh points. Then we assign the 
probability density (ρ = |ψ|2) to each mesh point rj under the 
normalization condition ∑ 
����




���
� � by interpreting the 

N-mesh points as the 1 spatial-coordinate states. With this 
discrete probability distribution ρ(rj), we can easily obtain 
the discrete Shannon entropy for the N mesh points or the 
N spatial-coordinate states defined by   

��
� � �∑ 
���� 	
�
 ����



���
	. (2)

We obtain several Shannon entropies by the definition 
above. In Fig. 1, the Shannon entropies for N = 98, 212, 
398, 596, 810, and 1040 are shown in panels (c), (d), (e), (f), 
(g), and (h) respectively. Note that not only do the profiles 

FIG. 1. The eigenvalue trajectories and their corresponding Shannon entropies. (a) Real part of eigenvalues kR as the eccentricity 
ε is varied. (b) Imaginary part of eigenvalues kR as ε is varied. The Shannon entropies for N = 98, 212, 398, 596, 810, and 1040 are 
shown in (c), (d), (e), (f), (g), and (h), respectively.
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of the Shannon entropies vary, but also their absolute val-
ues. i.e., the values increase with increasing N mesh points. 

We can understand this behavior by considering maximal 
entropy states. The maximal entropy with N mesh points is 
given by S(ρmax)=log N. Since the state for the maximal en-
tropy is not the eigenstate of a Hamiltonian, we artificially 
impose uniform intensities inside the resonator.

III. DIFFERENCE BETWEEN SHANNON 
ENTROPIES AND ITS SATURATION

In this section, we consider the Shannon entropies for 
resonance mode patterns and maximal entropies simulta-
neously as functions of N mesh points and the results are 
shown in Fig. 2(a). The curved lines are Shannon entropies 
for resonance mode patterns, whereas the straight lines are 
maximal entropies. These lines are too complicated to un-
derstand since two types of the Shannon entropies seem to 
behave independently. However, we can reveal the proper-
ties of these behaviors by considering the differences be-
tween these two types of Shannon entropies.

To study the behavior of Shannon entropies depending 
on a specific N value, let us consider the differences be-
tween the Shannon entropies of the specific mode patterns 
S(ρ) and maximal entropies S(ρmax)

������ � 	
�� � ��
�. (3)

Note that Eq. (3) is equivalent to a Kullback-Leibler 
divergence when one of the two probability distribu-

tions is uniform, i.e., ����� 
 �� � �∑ ��r��	
�
��r

�
�

��r
�
�




���
  where 

��r�� �
�



 [40]. The results are shown in Fig. 2(b). They 

have maximum values at  ≃ 0.25 and minimum values at 
 ≃ 0.38, respectively, and they have simpler forms than 
the Shannon entropies themselves. Furthermore, it should 
be noted that the DSE curves fluctuate below N(4) = 2020 but 
almost saturate beyond the N(4) = 2020. The inset in Fig. 
2(b) clearly shows this behavior. For our numerical cut off, 
we consider on the order of 10−6 for DSE. Thus, the saturated 
curve for DSE (N) can be defined by the value of DSE (N(m+1)) − 
DSE (N(m)) whose order is 10−6. The value DSE (N(7)) − DSE 
(N(6)) ≈ 8 × 10−6. In this way, we adopt the DSE (N(7)) = 3492 
as the saturated curve for the difference between the Shan-
non entropies. 

IV. COMPARISON OF TWO SHANNON 
ENTROPIES FOR SPATIAL RESOLUTION

4.1.  Theoretical and Observed Values for Spatial 
Resolution

The Kullback-Leibler divergence is directly related to 
the difference in Shannon entropies when one of the two 
probability distributions is uniform, but in general this is 
not the case. Instead we employ the chi-squared test, which 

can be defined as an approximation of a Kullback-Leibler 
divergence [41]. The chi-squared test is used to quantify a 
difference between expected and observed values in a data 
set [42]. Its definition is

�� � ∑
�!

�
�


�
�
�



�

"#

	�� , (4)

where O are the observed values actually obtained, E are 
the expected or theoretical values assumed to be true, and ñ 
is the number of cells.

Actually, it is the statistical procedures whose results are 
evaluated with reference to the chi-squared distribution. 

FIG. 2. Saturation of Shannon entropy. (a) The Shannon 
entropies for mode patterns and maximal entropies as the 
number of mesh point N is varied. The curved lines are 
Shannon entropies for the probability density of the resonance 
mode pattern whereas the straight lines are maximal entropies. 
The red circles are for N = 504, the blue up-ward triangles 
are for N = 1040, the green down-ward triangles are for N 
= 1480, the orange left-facing triangles are for N = 2020, 
the cyan right-facing triangles are for N = 2480, the violet 
diamonds are for N = 3008, and the pink stars are for N = 3492. 
(b) Differences between the two types of entropies in (a) are 
shown. DSE shows a tendency toward saturated behavior past 
N(4) = 2020. The inset clearly shows this behavior.
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However, we take advantage of Eq. 4 to quantify the differ-
ences between two data sets, even though our data sets were 
not evaluated with reference to the chi-squared distribution. 
Here we suggest that the observed values of the Shannon 
entropy as a function of a specific N are given by Eq. (2), 
i.e. the Shannon entropy of the specific mode patterns are 
obtained at N when N is less than the saturated number N(7) = 
3492, and the expected values are given by the difference 
between the maximal entropies for the specific N and the 
saturated curve DSE (N = 3492). That is, E (N) ≡ log N − DSE 
(N = 3492).  

In our case, it should be also noticed that the number of 
unit cells ñ corresponds to the number of discretized coor-
dinates . In Fig. 3 red squares indicate the observed values 
and blue circles the expected values. In Figs. 3(a), (b), (c), 
(d), (e), and (f), we see the observed and expected values in 
sequence, depending on each number N of mesh points: 98, 
212, 398, 596, 810, and 1040. Note that the absolute values 
of the two curves (red and blue) increase as N increases. 
Furthermore, the profiles of two different colored curves 
become similar to each other as N increases. This similarity 
between the two different curves (data) can be quantified 
by the value of the chi-squared test χ2.

4.2.  Chi-squared Test and Spatial Resolution of Mode 
Patterns in a Resonator

The results of the chi-squared test, which are obtained 
from the observed and theoretical values shown in Fig. 3, 

are presented in Fig. 4. The red squares for the chi-squared 
values are shown as a function of the N mesh points. Note 
that χ2 decreases drastically when N ≤ 800 and gradually 
when N ≥ 800. The decay rate of the curve at point A (N = 
212) is much larger than at point B (N = 810), i.e. the slope 
at A is steep but that at B converges critically to zero. This 
fact suggests that the value at B (N = 810) can be used to 
estimate an optimized minimum-mesh point for a mode 
pattern. 

To manifest this suggestion, we plot the mode patterns 
at each number of mesh points in Fig. 4. We can expect that 
the morphologies of the mode patterns become clear as N 
increases. The morphologies in the A group are so blurred 
that we cannot recognize the mode patterns. Then, let us 
examine the morphologies in the B and C groups. First of 
all, it should be noticed that the morphology of C1 features 
clear quantum numbers such as radial number l = 5 and an-
gular number m = 3 at  = 0. Also, C1 and C2 have smooth 
morphologies. We chose the eccentricity values   = 0.25 
and 0.38 to be the extremal points of Shannon entropy in 
our examples. In addition, these extremal points are related 
to mode-pattern localization or delocalization. That is, the 
mode pattern is well localized at  = 0.25 as a bouncing-
ball-type mode, resulting in minimal Shannon entropy. On 
the contrary, the mode pattern at  = 0.38 is delocalized, 
since it is the transient mode from the bouncing-ball to an-
other mode (not shown), and consequently results in maxi-
mal Shannon entropy. Our future work will deal with wave 
localization and delocalization, comparing to the inverse 
participation ratio [43, 44]. Next, let us compare the mor-
phologies of C1,2,3 to those of B1,2,3. We can (barely) identify 
the quantum numbers (l = 5, m = 3) in B1 as well as in C1, 
and the other two overall morphologies of B1,2 are similar to 
those of C1,2, even though their resolutions are quite differ-

FIG. 3. Observed and expected values for the chi-squared 
test. Red curves of the observed values and blue curves of the 
expected values for Shannon entropies, depending on each N 
value: (a) 98, (b) 212, (c) 398, (d) 596, (e) 810, and (f) 1040. 
The two curves (red and blue) become more similar to each 
other as N increases.

FIG. 4. The red squares for chi-squared test values are 
shown as N is varied. We set B (N = 810) to be the optimized 
minimum-mesh point for spatial resolution. Inset: A1,2,3 is the 
mode pattern for N = 212 at ε = 0.0, 0.25, and 0.38, B1,2,3 is the 
mode pattern for N = 810, and C1,2,3 is the mode pattern for N 
= 3492. We can identify the quantum number (l = 5, m = 3) for 
B1 as well as C1.
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ent. The criteria of the noticeable identification can be es-
tablished, such that the local maximum of probability den-
sity for the mode pattern is larger than approximately the 
natural constant e multiplied by the local minimum value. 
That is, 

$
��	

$
��


� �. Consequentially, the optimized minimum-
mesh point corresponds to the minimum resolution, and it 
can be used as a sampling of the morphology for the mode 
pattern.

When the number of mesh points N exceeds the satu-
rated number (N = 3492), the morphologies of the mode 
patterns do not change and the resolution hardly increases 
(not shown in the figure). That is, we do not need N larger 
than the saturated number (N = 3492) to see the mode pat-
terns clearly. This fact implies that the χ2 value for the iden-
tifiable quantum numbers indicates the optimized minimum 
mesh size for the spatial resolution (minimum resolution), 
whereas the value for the saturation of the difference of 
Shannon entropies DSE indicates the maximum mesh size 
for spatial resolution (maximum resolution).

4.3.  Relation between Spatial Resolution and 
Increasing Wave Number

Intuitively, we can assume that the more massive the 
morphology of mode pattern becomes, the more mesh 
points we need for spatial resolution. To check this as-
sumption, we investigate the relation between χ2 and the 
eigenvalue trajectories of increasing Re(kR), since the 
increasing wave number Re(kR) directly makes the mode 

pattern more massive. Figure 5 shows these results. The 
red circles are for Re(kR)~2.8, the blue upward triangles 
are for Re(kR)~5.8, the green downward triangles are for 
Re(kR)~11.0, and the pink left-facing triangles are for 
Re(kR)~16.0. The absolute values of the curves for χ2 in-
crease as Re(kR) increases.

Furthermore, the convergence rate becomes low as 
Re(kR) increases. That is, the optimized minimum-mesh 
point NO for the red circles is N~212, for the blue upward 
triangles is N~810, for the green downward triangles is 
N~2952, and for the pink left-facing triangles is N~6180. 
These results match our intuition. At each optimized mini-
mum mesh point NO, we can identify the quantum numbers 
of the resonance-mode patterns in the circular resonator: 
The mode pattern of quantum numbers (l = 2, m = 3) is 
shown in Fig. 5(b); (l = 5, m = 3) is in Fig. 5(c); (l = 10, m = 
4) is in Fig. 5(d); and (l = 13, m = 8) is in Fig. 5(e). From 
the results above, we can deduce a proportionality coef-
ficient N between the optimized minimum-mesh point NO 
and (nkR)2: NO~{ N × (nkR)2} with N ~2.2.

V. CONCLUSIONS

We study the Shannon entropy as an indicator of the spa-
tial resolutions for the morphologies of the resonance-mode 
patterns in an elliptical resonator, and obtain two types of 
optimized mesh points of minimum and maximum size.

Using the chi-squared test, the optimized minimum-
mesh size for spatial resolution can be confirmed by the 
identifiable quantum number. On the contrary, the satura-
tion of difference in Shannon entropies can correspond to 
the optimized maximum-mesh size for spatial resolution, 
since after saturation the morphology of the mode pattern 
does not change and the resolution does not increase sig-
nificantly.

We also investigate the relation between the optimized 
minimum-mesh point NO for the chi-squared test and the in-
crease in (real) wave number Re(kR) at constant refractive 
index n. The absolute values of the curves for chi-squared 
test values increase as the (real) wave number increases. 
Finally, we estimate the proportionality coefficient N be-
tween the NO and (nkR)2, whose approximate value is 2.2. 
Note that the conditions we have studied cannot be directly 
applied to a chaotic resonator, since we only deal with an 
integrable resonator. In spite of this limitation, we hope that 
our results can be a cornerstone for research on both the 
morphologies of the mode patterns and their spatial resolu-
tions from the perspective of information theory.
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